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Indications that the yield point at constant strain
rate and the inception of tertiary creep
are manifestations of the same failure criterion
using the universal viscoelastic model

RICHARD D. SUDDUTH
Materials Research and Processing Consultants, 102 Rue Le Bois, Lafayette, La 70508

In a preceding publication this author introduced a new universal viscoelastic model to
describe a definitive relationship between constant strain rate, creep and stress relaxation
analysis for viscoelastic polymeric compounds. Since creep failure criterion for this model
had not been addressed in detail in previous publications, selected creep failure criterion
for this model were addressed in this study.

The first manifestation of the yield stress failure criterion as applied to creep was
elucidated at the intersection of the yield stress relaxation curve and the creep stress vs
time curve. A second way to apply yield point failure criterion to creep failure was through
the identification of a specific creep time associated with the limiting strain to yield, ε∞. The
creep strain at ε∞ occurs at the very end of the straight line portion of secondary creep and
is also the strain at which tertiary creep appears to be initiated, εitc = ε∞.

As the strain increases from the inception of tertiary creep, εitc, eventually a strain is
reached where a calculation option using this model would require a step back in time to
go to the next differential element of strain. Since going back in time is currently
impossible, only a huge jump in strain obtained by another calculation option for the next
element of time would be realistic. Since this critical creep strain, εCC, is slightly greater
than the inception of tertiary creep, if failure did not occur at the inception of tertiary creep
then it would almost surely be expected to fail catastrophically at this condition.

The near equivalency of the critical creep strain criterion and the yield strain criterion was
found to be much more probable the lower the value of efficiency of yield energy
dissipation such that 0 < n << .4. C© 2003 Kluwer Academic Publishers

1. Introduction
The extended use of finite element analysis with poly-
meric compounds [1] and composites [2] in recent years
has generated a need for a simple analysis approach that
relates creep, stress relaxation and constant strain rate
measurements all in one simple model. One such unify-
ing model has recently been published by this author [3]
that introduces a new universal viscoelastic model to de-
scribe a definitive relationship between constant strain
rate, creep and stress relaxation analysis for viscoelas-
tic polymeric compounds. All three phases of the creep
curve including primary, secondary and tertiary creep
have been well represented using this model. Prior to
the introduction of this new model several authors had
attempted to describe two or more of these viscoelastic
concepts in one unifying formulation [4, 5]. However,
most of the effort over the years has been to simulate
uniaxial creep [6–7], stress relaxation [4] or constant
strain rate data [8–11] separately. This new formula-
tion approach also offers a reasonably simple process

in which to shift from a constant strain rate configura-
tion to a creep calculation or stress relaxation configu-
ration without changing formulation considerations or
without stress or strain discontinuities.

While this new model has successfully characterized
these three primary viscoelastic properties, the potential
of a common failure criterion between these three prop-
erties has not yet been addressed in detail. This study
will show that the application of an apparent common
concept for failure between constant strain rate, creep
and stress relaxation evaluations has been found to have
some surprisingly different manifestations in practice.
Since stress relaxation measurements have been ad-
dressed in some detail previously [3], this study will
focus predominantly on a comparison between con-
stant strain rate measurements and creep evaluations
regarding failure criteria. For reference, this new uni-
versal viscoelastic model [3] will be briefly reviewed
before introducing some new concepts to better under-
stand creep failure phenomena.
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1.1. Brief review of the universal
viscoelastic model relating constant
strain rate, creep and stress relaxation
measurements

The basic universal viscoelastic model recently pub-
lished elsewhere [3] begins with the most general equa-
tion to fit a stress strain curve which can be written as

σ

σy
= K ε + A2(K ε)2 + A3(K ε)3 + A4(K ε)4 · · ·

+ An(K ε)n (1)

where

E = Elastic modulus (psi)
σy = Engineering yield stress (psi)
K = E

σy
≈ Constant for a series of strain rates for the

same polymer formulation
A2, A3, . . . Ai = Variable constants for a series of

strain rates for the same polymer formulation

In this study only the first three constants in Equa-
tion 1 have been addressed as:

σ

σy
= K ε + A2(K ε)2 + A3(K ε)3 (2)

According to Brown [9, 13, 14] and several other
authors [10, 15] K = E

σy
is normally a constant for a

given polymer formulation that typically ranges from
40–60. Also note that the stress, σ , from Equation 2
reduces to

σ → Eε as ε → 0 (3)

The strain, ε, in Equation 1 should be positive in a ten-
sion mode and negative for the compression mode. The
analysis in this study assumed the strain, ε, to be posi-
tive and in a tension mode. The required modifications
for the compression condition will be left to the reader.

The two other conditions required to evaluate the
constants A2 and A3 in Equation 2 would include the
following:

By definition: σ = σy when ε = εy

Second condition: dσ/dε = 0 at σ = σy when ε = εy

Using these conditions it can be shown that if K εy ≤ 3

A2 = (3 − 2K εy)

K 2ε2
y

(4)

A3 = (K εy − 2)

K 3ε3
y

(5)

Thus if d(σ/σy )
dε

= 0 and if K εy ≤ 3, then the two extrema
at ε = ε1 and ε = ε2 can be found to yield a maximum
at

σ1 = σy at ε1 = εy (6)

and a minimum at

σ2 = σy

(
K 2ε2

y(4K εy − 9)

27(K εy − 2)2

)
at ε2 = εy

×
(

K εy

(3K εy − 6)

)
(7)

The relationship between yield stress, σy , and time to
yield, ty , can be addressed using the following simple
relationship currently included in ASTM D2837 -98a
(Standard Test Method for Obtaining Hydrostatic De-
sign Basis for Thermoplastic Pipe Materials):

σy = β

tn
y

(8)

Where σy = the engineering yield stress, ty = time to
yield, n = Efficiency of Yield Energy Dissipation and
β = Constant. This relationship has also been used by
Reinhart [12] to predict long term failure stress (which
is normally close to the stress evaluated from the stress
relaxation of the yield stress) as a function of time.

The calculated values of strain, ε, can also be evalu-
ated on a time scale by noting that the time, t , to reach a
given strain, ε, can be evaluated from the characteristic
strain rate, ε̇i , as:

t = ε

ε̇i
(9)

Also note that the yield strain, εy , and the time to yield,
ty , are also related by a characteristic strain rate, ε̇i , as:

ty = εy

ε̇i
(10)

Preliminary experimental measurements by this author
as well as others in the literature [4, 5] have found that
the strain at yield, εy , generally has been found to be a
linear function at low strain rates, ε̇i , for constant strain
rate measurements as:

εy = ε∞ + αε̇i (11)

where, ε∞, is the limiting strain to yield when the strain
rate approaches an infinitely small value (ε̇i → 0) and
α is simply a small proportionality constant.

Brinson and DasGupta [4] point out that Crochet [16]
predicted theoretically that the yield strain should de-
crease with an increase in strain rate. As indicated previ-
ously [3] this author has found that α is indeed negative
for polyethylene. However, Malpass [5] and this author
have found that for most ABS materials the strain to
yield increases as the strain rate increases which would
make α positive. In addition, Brinson and DasGupta [4]
also found out experimentally that the yield strain in-
creased with an increase in strain rate for polycarbonate.

However, it should be pointed out that the linear func-
tion described by Equation 11 appears to be a good ap-
proximation of the more detailed model at low strain
rates. For the full range of strain rates and particularly
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for large strain rates then Equation 11 is better described
by the following equation;

εy = ε∞ + ε0(1 − e−γ ε̇i ) (12)

This equation has the following limits

εy → ε∞ as ε̇i → 0 (very long times)

εy → ε∞ + ε0 as ε̇i → ∞ (very short times)

In addition, Equation 12 can also be simplified using a
MacLaurin series of the exponential term to give

εy = ε∞ + ε0

(
γ ε̇i − γ 2ε̇2

i

2
+ · · ·

)
(13)

When ε̇i << 1 then Equation 13 reduces to

εy = ε∞ + ε0γ ε̇i (14)

Notice that Equation 14 is exactly the same as Eq-
uation 11 if

α = ε0γ (15)

In this study an ABS polymer will be used as an exam-
ple of a viscoelastic material to illustrate the capabilities
of the models presented. Based approximately on un-
published constant strain rate measurements made by
this author the ABS material to be used as an example
in this study will utilize the following constants ( γ =
50 min., ε0 = 0.0044 and ε∞ = 0.04).

Substituting Equation 10 into Equation 8 then gives

σy = β

(
ε̇i

εy

)n

(16)

Equation (16) can then be substituted into Equation 2
to give

σ = β

(
ε̇i

εy

)n[
K ε + A2(K ε)2 + A3(K ε)3] (17)

While the yield strain, εy , is best described over the
full range of strain rates by Equation 12, it is often
convenient to use Equation 11 to simulate the yield
strain, εy , at very low strain rates to give a simplified
form of both Equations 16 and 17 as

σy = β

(
ε̇i

ε∞ + αε̇i

)n

(18)

σ = β

(
ε̇i

ε∞ + αε̇i

)n[
K ε + A2(K ε)2 + A3(K ε)3] (19)

Based on Equations 16–19 it is apparent that any ten-
sile stress, σ , associated with a specific strain value,
ε, including the yield strength, σy , will increase with
an increase in the strain rate, ε̇i . However the strain to
yield, εy , based on either Equation 11 or Equation 12
is only mildly sensitive to strain rate and is allowed to

either increase or decrease slightly with an increase in
the strain rate, ε̇i .

It is also interesting to address the case that exists at
long times, t , or using Equation 19 at very low elonga-
tion rates, ε̇i . For this case note that the yield stress, εy ,
approaches a limiting value, ε∞:

εy = ε∞ + αε̇i → ε∞ as ε̇i → 0

For this case the constants A2 and A3 also approach the
following values

A′
2 = (3 − 2K ε∞)

K 2ε2∞
(20)

A′
3 = (K ε∞ − 2)

K 3ε3∞
(21)

and Equation 19 reduces to

σ = β

(
ε̇i

ε∞

)n[
K ε + A′

2(K ε)2 + A′
3(K ε)3] (22)

Combining Equations 9 and 22 gives

σ = β

(
ε

ε∞

)n( 1

tn

)[
K ε + A′

2(K ε)2 + A′
3(K ε)3]

(23)

Again it should be noted that Equations 22 and 23 ap-
ply only to the condition where the yield strain, εy ,
approaches its limiting value of ε∞ as a result of the
strain rate, ε̇i , approaching zero (0). Modification of
Equation 23 can also be rearranged for creep analysis
in the following form:

t =
(

ε

ε∞

)(
β

σ

)1/n[
K ε + A′

2(K ε)2 + A′
3(K ε)3]1/n

(24)

As was indicated in a previous publication [3],
Equations 22, 23 and 24 can be extremely helpful when
trying to address either creep or stress relaxation at very
low strain rates, ε̇i , or at very long times, t .

In general, Equations 1–19 can be used to describe a
complete series of uniaxial constant strain rate curves
for a given polymer formulation and/or processing con-
dition as indicated for an example ABS type material
in Fig. 1. These stress vs strain curves have been calcu-
lated primarily using Equation 17 from this new univer-
sal viscoelastic model for a series of strain rates from
.002 in/min to 20 in/min. The yield stress vs yield strain
curve also indicated in Fig. 1 was calculated primar-
ily from Equations 16 and 12 respectfully. For refer-
ence, all of the constant strain rate curves in Fig. 1
were generated using Equation 17 with the following
typical parameters for an ABS type polymeric mate-
rial K = 58, γ = 50 min., ε0 = 0.0044 and ε∞ = 0.04.,
β = 4990 psi and n = .21. Again these constants rep-
resent typical values for an ABS material as obtained
from unpublished constant strain rate data generated by
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Figure 1 Calculated engineering stress vs strain at various strain rates for a simulated ABS material using the universal viscoelastic model with
indications of creep at 300 psi.

this author. As described in a previous publication [3],
a creep curve at a constant stress such as 300 psi as indi-
cated in Fig. 1 can be developed from an identification
of the strain at a series of points at the same stress level
but from a series of constant strain rate curves.

The stress vs strain curves in Fig. 1 have been con-
verted to stress vs time curves in Fig. 2 using Equation 9.
The values for the yield stress vs time to yield in Fig. 2
have been obtained by applying Equation 8 or by ap-
plying Equation 10 to the strain to yield values shown
in Fig. 1. For reference, the yield stress vs time to yield
curve in Fig. 2 was again generated using the following
typical parameters for an ABS type polymeric material
with β = 4990 and n = .21. Again notice the locus of
points that would make up the creep curve at 300 psi
as indicated in Fig. 2. The generation of a creep curve
from these data points will be discussed in more detail
in the next section.
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Figure 2 Calculated stress vs time at different strain rates using the universal viscoelastic model with indications of creep at 300 psi and yield stress
relaxation.

1.2. Creep curve generation using the new
viscoelastic model

Creep is defined as the time dependent increase in strain
of a viscous or viscoelastic material under sustained
and constant stress. As indicated in Fig. 1 a creep curve
can be developed from an identification of the strain
at a series of points at the same stress level from a
series of constant strain rate curves. However, initially
the increase in stress to the level from which the creep
curve can be initiated must be simulated. Typically the
simplest simulation approach can be achieved from a
constant strain rate process that can be used to arrive at
the desired level of unchanging stress, σC , from which
the creep process can begin. Equation 17 can then be
used to generate this stress, σ , versus strain, ε, curve
at a specific strain rate, ε̇i , until the desired level of
stress, σC , is achieved from which a creep process can
be initiated.
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Once the desired stress level, σC , has been reached
using a constant strain rate approach, then Equation 19
must be solved for the strain to give a specific stress,
σC , as the strain rate, ε̇i , is continued to be decreased
to get to longer creep strains, εC , which can then be
converted to creep times, tC . Also note that after a des-
ignated very low effective strain rate, ε̇i , is reached the
creep time, tC , accumulated for a creep strain, εC , can
be calculated directly from Equation 24. The locus of
points involving calculated values of creep strain, εC ,
and the associated creep times, tC , then constitutes the
creep curve as indicated in Fig. 3.

There are four potential ways then to calculate creep
strain, εC , using Equation 17 or 19 as a function of strain
rate, ε̇i , to longer creep times, tC . These four options
include:

1. Solve Equation 17 or 19 as a cubic equation to
calculate the appropriate creep strain, εC , at decreasing
levels of strain rate, ε̇i , but at the desired creep stress
level, σC . The creep time, tC , accumulated for a specific
creep strain, εC , at a specific strain rate, ε̇i , can then be
calculated directly from Equation 9.

2. Solve Equation 17 or 19 using a numerical method
such as the Newton-Raphson method to calculate the
appropriate creep strain, εC , at decreasing levels of
strain rate, ε̇i , but at the desired creep stress level, σC .
The creep time, tC , accumulated for a specific creep
strain, εC , at a specific strain rate, ε̇i , can then be cal-
culated directly from Equation 9.

3. Solve Equation 17 or 19 as a constant strain rate
evaluation for each strain rate, ε̇i , and then solving the

y = 3.2917E-08x + 1.7272E-02

R2 = 9.9922E-01
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Figure 3 Calculated constant strain rate until the desired stress (300 psi) was reached followed by creep strain vs time and showing all three phases
of creep.

Equation 17 or 19 by trial and error for the creep strain,
εC , that yields the desired creep stress, σC . The creep
time, tC , accumulated for a specific creep strain, εC ,
at each specific strain rate, ε̇i , can then be calculated
directly from Equation 9.

4. Assuming the controlling strain rates, ε̇i , are very
small after the constant level of creep stress, σC , is
achieved and assuming the relative insensitivity of the
values of A′

2 and A′
3 to strain rate at that point, then the

creep curve can be calculated by close approximation
directly using Equation 24. By setting the creep stress,
σC , to a constant value then the creep time, tC , can
be calculated as a function of creep strain, εC , using
Equation 24.

While method 3 appears to be very time consuming it
can actually be evaluated relatively fast using a spread-
sheet software such as MS Excel. This approach was
also found to be particularly useful as the yield con-
dition for creep or the inception of tertiary creep was
approached and exceeded. If Option 3 is used, Equation
17 or 19 is first applied at a constant strain rate to in-
crease the stress and associated strain until the desired
stress level has been achieved. After the desired stress
level has been reached, the successive strain values for
the creep process can be developed by identifying the
appropriate strain on successive stress strain curves that
corresponds to the desired level of stress being evalu-
ated. At this point each constant strain rate curve can be
used to generate only one strain level at a given stress
level on the creep curve as indicated in Figs 1 and 2.
Since each constant strain rate curve can be described
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by Equation 17 or 19, then these equations can be used
to calculate the strain, εC , at the desired stress, σC and
at the characteristic strain rate of, ε̇i , being addressed.
For a creep process both the yield strain, εy , and the
yield strength, σy , are functions of only the strain rate,
ε̇i , as indicated in Equations 12 and 16. Also the time,
tC , for a specific strain, εC , at a specific strain rate, ε̇i ,
can be calculated directly from Equation 9. Therefore
at a constant stress level, σC , the creep curve for a series
of strain levels, εC , and their associated times, tC , can
be calculated from a series of constant strain rate stress
strain curves. The locus of these calculated points then
constitutes all three phases of the creep curve including
primary, secondary and tertiary creep as indicated in
Fig. 3.

According to Thorkildsen [17] Primary Creep in-
cludes all the initial changes in deformation prior to
Secondary Creep. The first region of creep after Pri-
mary Creep that shows a linear increase in strain with
time is called Secondary Creep. Tertiary Creep is the
final stage of creep and it will be shown that this stage
of creep can be correlated with the yield point from
constant strain rate measurements.

Using the formulation concepts to calculate creep
as discussed in this paper, the initial phase of a creep
test begins with the constant strain rate component fol-
lowed by the more typical creep process as indicated
in Fig. 3. Of particular interest is the observation that
the three different phases of the creep curve in Fig. 3
plot as straight lines when plotted on a log-log scale as
indicated in Fig. 4.

If the simplifying assumptions of Option 4 are ac-
ceptable after some limiting strain rate, then use of
Equation 24 allows the simplest approach to generate
all three phases of the creep curve including primary,
secondary and tertiary creep as indicated in Fig. 4. In
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Figure 4 Calculated plot of long term creep at 300 psi stress showing the linear character of strain at both short and long times on a log-log scale.

addition, the creep results in Fig. 4 can be described over
a much larger time scale in a very convenient fashion
using Option 4. It is interesting to note in Fig. 4 that
both Option 3 and Option 4 give the same creep curve
up until the inception of tertiary creep. At this point
there is a jump in the data using Option 3 but the results
for Option 4 yield quite a different but continuous curve
near the condition as defined by yield point failure cri-
terion. An elucidation of the apparent conflict between
Options 3 and 4 near creep failure as indicated in Fig. 4
will be addressed in the next sections of this paper.

1.3. Manifestations of yield stress failure
criteria on creep using the universal
viscoelastic model

The first maximum stress (where dσ /dε = 0) on each
of the constant strain rate curves in Fig. 1 has often
been defined as the yield stress and this yield point can
be identified by a specific stress at a specific strain.
The yield point for constant strain rate data is often
considered at least one condition for failure in a polymer
or polymer compound. This failure condition can then
be applied to the creep process to see how it might be
manifested using the model described in this study.

The first manifestation of the yield stress failure cri-
terion as applied to creep can be elucidated in Fig. 2.
The three different types of curves indicated in Fig. 2 in-
clude the constant strain rate curves involving stress vs
time, the creep curve at 300 psi and the locus of points
describing the stress relaxation of the yield stress as
a function of the time to yield. The failure condition
for creep at 300 psi would then appear to occur at the
intersection of the yield stress relaxation curve and the
creep curve at 300 psi yield stress. This failure criterion
involves primarily stress as related to the yield stress.
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The creep time anticipated at failure while maintaining
a constant creep stress would then be obtained from the
time to yield.

At very long times or very low strain rates the yield
strain approaches the limiting yield strain of ε∞ = .04
for the simulated ABS material evaluated in this study.
Therefore, a second way to describe the yield point fail-
ure criterion for creep at 300 psi would be to identify
the point described by the creep time required to reach
the limiting strain to yield (ε∞ = .04) as indicated in
Fig. 3. The creep strain of ε∞ = .04 occurs at the very
end of the straight line portion of secondary creep as
indicated in Fig. 3. In other words the strain at ε∞ = .04
is also the strain at which tertiary creep appears to be
initiated. Thus, if the strain to yield is assumed to be
nearly a constant at very low cross head speeds or at
long creep times, then the strain to yield at long creep
times, ε∞, is apparently the same as the strain at the in-
ception of tertiary creep, εitc . As indicated earlier, the
yield point for constant strain rate data is considered in
some circles to be at least one condition for failure in
a polymer or polymer compound. Therefore, the creep
time associated with the strain at the inception of ter-
tiary creep, εitc, would be expected to be consistent with
the criterion described by yield failure at the limiting
yield strain, ε∞, for constant strain rate data.

1.4. Apparent failure criterion for creep
that is slightly different from yield
point criterion

As discussed earlier, all three phases of the creep curve
including primary, secondary and tertiary creep are in-
dicated in Fig. 4. Up to the inception of tertiary creep
the results in Fig. 4 show that the same creep curve is
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Figure 5 Creep strain vs time at different levels of creep stress for example ABS Material (n = .21).

obtained for both Options 3 and 4. However, slightly
after the condition defined by yield point failure crite-
rion there is an apparent jump in the data using Option 3
while a continuous curve is obtained for Option 4. An
elucidation of the apparent conflict between Options 3
and 4 is much easier to understand if we look closer at
the realistic nature of these two methods for evaluating
creep. For option 4 the strain determines the calculated
creep time as indicated in Equation 24. As the strain
increases from the inception of tertiary creep it can be
seen in Fig. 4 that eventually a strain is reached where
Option 4 calculations actually would require a step back
in time to go to the next differential element of strain.
Since going back in time is currently impossible, only
the jump in strain calculated by option 3 for the next
element of time would be realistic. However, for Op-
tion 3 a huge jump in strain is required to go to the next
element of time. Since this condition is already slightly
beyond the inception of tertiary creep, then if failure
did not occur at the inception of tertiary creep it would
almost surely be expected to fail at this condition.

The jump-in-strain creep failure criterion is sensitive
to several variables and one such variable is the con-
stant stress level as indicated in Fig. 5. The location of
the strain at which this jump in strain is required at a
given stress level has been designated as the strain at
“Critical Creep”, εCC , and can be identified by taking
the derivative of Equation 24

t =
(

ε

ε∞

)(
β

σ

)1/n[
K ε + A′

2(K ε)2 + A′
3(K ε)3]1/n

(24)
The derivative of Equation 24 gives

dt

dε
= t

ε

[
1 + 1

n

(
1 + 2A′

2(K ε) + 3A′
3(K ε)2

1 + A′
2(K ε) + A′

3(K ε)2

)]
(25)
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Thus when
dt

dε
= 0 then Equation 25 reduces to

n = −
(

1 + 2A2(K εCC) + 3A3(K εCC)2

1 + A2(K εCC) + A3(K εCC)2

)
(26)

Equation 26 can then be solved for the strain at “critical
creep,” εCC, to give

εCC

=

−(n + 2)A′

2 ±
√

(n + 2)2 A′
2

2 − 4(n + 1)(n + 3)A′
3

2 (n + 3) A′
3 K




(27)

The maximum or the minimum value of the strain at
critical creep, εCC, occurs when the square root compo-
nent of Equation 27 is equal to zero (0) to give

n = −2 ± 2

√
K ε∞(K ε∞ −2)

4 K ε∞ − 9
(28)

Also note that when n = 0, then Equation 27 yields
“Critical Creep” at

εCC = ε∞ (29)

It should also be noted that a second extra extrema
strain, εEE, is also achieved when n = 0 at

εEE = ε∞
(

Kε∞
3(Kε∞ − 2)

)
(30)
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Figure 6 Differential (or slope) of creep strain vs time, dε/dt, vs creep strain (creep stress = 300 psi).

It is also desireable to calculate the creep slope, dε
dt .

However, even though we do not have a direct rela-
tionship with strain as a function of time we do we do
have the derivative, dt

dε
, described by Equation 25. Note

that the reciprocal of Equation 25 then gives the desired
derivative or slope as

dε

dt
= εn

t

(
1 + A′

2(K ε) + A′
3(K ε)2

1 + n + (2 + n) A′
2(K ε) + (3 + n) A′

3(K ε)2

)

(31)

The derivative described by Equation 31 has been plot-
ted in Fig. 6 for creep at a constant stress of 300 psi.
As indicated in Fig. 6, the instantaneous slope, dε

dt , for
creep at a constant stress of 300 psi has been generated
by combining Equations 24 and 31 for the same ABS
example material. This instantaneous slope in Fig. 6
is directly related to the slope of graphs in Figs 3
and 4. Note in Fig. 6 that the derivative, dε

dt , or creep
slope approaches a non-zero minimum but nearly con-
stant value in the secondary creep region which ap-
pears to run from a strain of approximately ε = .016
to ε = .04. The slope in Fig. 6 also goes through two
unstable conditions where the slope flips from one sign
and then goes back to a slope of the opposite sign at
a strains of approximately εCC = .046 and εEE = .95.
The exact location of the strains at which these un-
stable slope changes occur can be obtained from
Equation 27.

It is important to recognize that Equation 27 is inde-
pendent of creep stress, σC . This means that the strain
at critical creep, εCC, will always occur at the same
strain independent of creep stress as indicated in Fig. 5.
Therefore the strain at critical creep, εCC, evaluated
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from Equation 27 is only dependent on the efficiency
of yield energy dissipation, n, the ratio of modulus to
yield stress, K , and the limiting value of the yield strain,
ε∞. If we again use the simulated ABS material as the
example material with n = .21, K = 58 and ε∞ = .04,
then Equation 27 gives the “Critical Creep” strain,
εcc, at

εCC = 0.04592

For this example the critical creep strain is only 15%
greater than the yield strain criteria where the strain at
the inception of tertiary creep would be εitc = ε∞ = .04.

Using Equation 24 it is also easy to see that the ratio
of the critical creep time, tCC, or the time to reach the
critical creep strain, εCC, at and the time to the inception
of tertiary creep, titc, from the strain at the inception of
tertiary creep, εitc = ε∞, would also be independent of
the creep stress. However, as indicated in Equation 24
the time to failure for these two different techniques
are not a necessarily direct ratios of their strains. Us-
ing the ABS example again the critical creep time can
be shown to be only 7.42% greater than the time to
the inception of tertiary creep independent of creep
stress.

These results seem to explain at least two separate ex-
perimental observations that this author has witnessed
regarding the way that creep failure occurs in ABS Ma-
terials. First, the failure condition in creep for ABS
materials almost always occurs at a strain that is just
slightly greater than the failure strain and failure time
predicted from yield criterion. This result would be very
consistent with the time to critical creep being just 7.5%
greater than the time to reach the yield condition as pre-
dicted for the example ABS material. It should also be
pointed out that the order of magnitude accuracy of the
measurement of the time to creep failure is also often no
better than 7.5%. Therefore, since time to critical creep
and the time to creep failure from yield criterion can
sometimes be very difficult to separate, it often appears
that these two conditions may just simply be manifes-
tations of the same failure phenomena.

The second experimental observation is that creep
failure for ABS materials often involves a sudden but
rapid increase in strain just prior to failure. The shape of
the creep curves at different creep stresses as indicated
in Figs 4 and 5 would appear to explain this phenomena.
In order to avoid going back in time it would appear that
a sudden strain would be required at critical creep to
reach the next stable strain condition in the next element
of time. It is easy to visualize how such a failure could
be catastrophic—which in fact it is.

1.5. Influence of the efficiency of yield
energy dissipation, n, on creep

In a recent review by this author [18] the power law
constant, n, was found to be a dampening factor for the
rate of dissipation of the available energy/volume rela-
tive to time in going from one strain rate curve to an-
other at the yield condition. Consequently, the power

law constant n was designated [18] the Efficiency of
Yield Energy Dissipation with an effective range of
0 ≤ n ≤ 1. Hernandez-Jimenez et al. [19] also recently
reviewed several different models that have also tried
to justify a theoretical development for the constant
n. Most of these models referred back to the original
model by Scott-Blair [20] who justified the constant
n from a fractional derivative for a viscoelastic mate-
rial. If the material being described can be considered
to be viscoelastic, then Scott-Blair argued that the
value of n must exist in the range from 0 (elastic solid)
< n <1 (viscous liquid). Others have expanded on
Scott-Blair’s analysis as recently reviewed by Jimenez
et al. [19].

The major advantage of the Scott-Blair analysis is
that it does address a nice explanation of why the value
of the “efficiency of yield energy dissipation,” n, should
only range from 0 to 1. The sensitive nature of the value
of the “efficiency of yield energy dissipation,” n, rela-
tive to the long range failure of materials is clearly seen
in Fig. 7 for a constant stress of 300 psi. In this figure
when the value of n was decreased 10% from .22 to .20
the corresponding critical creep failure time increased
257% from .73 years to 2.59 years. The influence of
a much larger range of n is illustrated in Fig. 8 for a
creep stress of 300 psi. As the value of n was increased
from .2 to 1.0 in Fig. 8 the critical creep failure time de-
creased from 2.59 years to 22 minutes. The calculated
results indicated in Figs 7 and 8 clearly show that if vis-
coelastic materials are intended to survive considerable
application stress for very long times they need to have
“efficiency of yield energy dissipation” values of n < .4
to be practical. This result is certainly consistent with
experimental data. An explanation for this phenomena
based on the Scott-Blair analysis would describe such
a viscoelastic material as having a more elastic-solid
like character than a viscous-liquid like character since
n would be closer to 0 than to 1.

Also note that the expected creep failure strains
are clearly indicated in Fig. 8 by the critical creep
values. These results indicate that as n increases to
values larger than n > .4 then the strain to critical
creep also increases to values that can be significantly
greater than the inception of tertiary creep. Thus the
near equivalency of the critical creep criterion and
the yield stress criterion is significantly more valid
the lower the value of the efficiency of yield energy
dissipation.

It is clear from Figs 5–8 that there should be two ex-
trema solutions to Equations 26 and 27 for each level of
n as indicated in Fig. 9. However, of these two extrema
the value for critical creep, εCC, would be the strain of
primary interest and this critical creep strain should be
just slightly greater than the strain at the inception of
tertiary creep. The second extra extrema strain, εEE, is
not real since it only exists if it is possible to go back
in time as indicated in Figs 7 and 8.

Also note in Fig. 9 that a maximum value of the effi-
ciency of yield energy dissipation, n, is readily appar-
ent. Since K = 58 and ε∞ = .04 for the example ABS
material, then K ε∞ = 2.32 and the maximum efficiency
of yield energy dissipation can be found to occur at of
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Figure 7 Creep strain vs time at three different levels of the efficiency of yield energy dissipation, n, for the example ABS material (stress = 300 psi).

n = 1.257 using Equation 28. At this maximum value
of n, then a critical creep stain of εCC = 0.07842 would
be obtained using Equation 27. While it is possible to
calculate such a maximum as indicated in Fig. 9, it is
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Figure 8 Creep strain vs time at levels covering the full range of the efficiency of yield energy dissipation, n, for the example ABS material
(stress = 300 psi).

not expected that such a material would be expected
to have much elastic character based on a Scott-Blair
type analysis and would therefore not be expected to
have much practical interest as a viscoelastic structural
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Figure 9 Efficiency of yield energy dissipation vs critical creep at failure for ABS example material.

material. While Equation 28 is only a function of the
product K ε∞, it would not be reasonable to expect that
a range of values for the efficiency of yield energy dis-
sipation, n, could be achieved while retaining the same
constant value for the product K ε∞.

While the maximum indicated in Fig. 9 is interest-
ing, it is expected that material formulations will not
be controllable enough in the near future to be able to
generate such range of viscoelastic character using only
formulation modifications for the same base material. It
is also expected that significant experimental data will
be needed to be able generate adequate control of the
viscoelastic character of materials into the foreseeable
future. Until proven otherwise it would be reasonable to
assume that all the constants in the universal viscoelas-
tic model described in this study will change at the same
time but not necessarily in some predictable fashion. As
a result, if one is interested in the long range failure of
materials, then at least for the near future the viscoelas-
tic constants needed for the universal viscoelastic model
used in this study will need to be evaluated for each vis-
coelastic material formulation generated.

2. Conclusion
In a preceding publication this author introduced a
new universal viscoelastic model to describe a defini-
tive relationship between constant strain rate, creep
and stress relaxation analysis for viscoelastic polymeric
compounds. Since the failure criterion for creep for this
model had not been addressed in detail in previous pub-
lications, this study focused predominantly on a com-
parison between constant strain rate measurements and
creep evaluations regarding failure criteria.

The first manifestation of the yield stress failure cri-
terion as applied to creep was elucidated at the intersec-

tion of the yield stress relaxation curve and the creep
stress vs time curve. This stress failure criterion was
applied from the yield stress and the time to yield to
the creep time anticipated at failure while maintaining
a constant creep stress.

At very long times or very low strain rates the strain
at yield approaches the limiting yield strain, ε∞. There-
fore, a second way to describe the yield point failure
criterion for creep would be to identify the point de-
scribed by the creep time required to reach the limiting
strain to yield, ε∞ . The creep strain at ε∞ occurs at the
very end of the straight line portion of secondary creep
that is also the strain at which tertiary creep appears
to be initiated, εitc = ε∞. Thus, if the strain to yield is
assumed to be nearly a constant at very low cross head
speeds or at long creep times, then the strain to yield
at long creep times is apparently the same as the strain
at the inception of tertiary creep. Therefore, the creep
time associated with the strain at the inception of ter-
tiary creep would be expected to be consistent with the
failure criterion described by yield strain at the yield
point for constant strain rate data.

Four potential ways to calculate creep strain as a
function of time were described for the model used
in this study. Three of these methods were iterative
calculations and a fourth option was a simplified non-
iterative version useful for evaluating long term creep.
As the strain increases from the inception of tertiary
creep it was found that eventually a critical creep
strain, εCC, is reached where the simplified continuous
curve calculations actually would require a step back
in time to go to the next differential element of strain.
Since going back in time is currently impossible, only
the huge jump in strain calculated by one of the trial
and error approaches for the next element of time was
found to be realistic. Since this critical creep strain, εCC,
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is slightly larger than the inception of tertiary creep,
then if failure did not occur at the inception of tertiary
creep it would almost surely be expected to fail at this
condition.

This study found that the derivative of creep time vs
creep strain went through zero and back to a slope of
the opposite sign at two strains—one of which is the
critical creep strain, εCC. It was found that the location
of the critical creep strain, εCC, was dependent only on
the efficiency of yield energy dissipation, n, the ratio
of modulus to yield stress, K , and the limiting value of
the yield strain, ε∞, and was essentially independent of
creep stress.

For the ABS example in this study the critical creep
strain was 15% greater than the yield strain criteria
while the time to critical creep was only 7.42% greater
than the time to the inception of tertiary creep. These re-
sults seem to explain at least two separate experimental
observations regarding creep failure in ABS Materials.
First, the failure condition in creep for ABS materials al-
most always occurs at a strain that is just slightly greater
than the failure strain and failure time predicted from
yield criterion. The second experimental observation is
that creep failure for ABS materials often involves a
sudden but rapid increase in strain just prior to failure.
In order to avoid going back in time it would appear
that a sudden large increase in strain would be required
at critical creep to reach the next stable strain condition
in the next element of time. It is easy to visualize how
such a failure could be catastrophic—which in fact it is.

In a recent review by this author [18] the Efficiency
of Yield Energy Dissipation, n, was found to have an
effective range of 0 (elastic solid) < n < 1 (viscous liq-
uid). In addition, if viscoelastic materials must survive
considerable application stress for very long times they
need to have “efficiency of yield energy dissipation”
values of n < .4 to be practical and consistent with ex-
perimental data. An explanation for this phenomena
based on the Scott-Blair analysis would describe such
a viscoelastic material as having a more elastic-solid
like character than a viscous-liquid like character since
n would be closer to 0 than to 1.

This study also found that as efficiency of yield en-
ergy dissipation, n, increases to values larger than n > .4
then the strain to critical creep also increases to values
that can be significantly greater than the inception of
tertiary creep. Thus the near equivalency of the criti-
cal creep strain criterion and the yield strain criterion
was found to be much more probable the lower the
value of efficiency of yield energy dissipation such that
0 < n � .4.
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